## Modeling Temporal Positive and Negative Excitation for Sequential Recommendation

Chengkai Huang\*
chengkai.huang1@unsw.edu.au
The University of New South Wales
Sydney, NSW, Australia

Xianzhi Wang XIANZHI.WANG@uts.edu.au University of Technology Sydney Sydney, NSW, Australia Shoujin Wang shoujin.wang@uts.edu.au University of Technology Sydney Sydney, NSW, Australia

Lina Yao lina.yao@unsw.edu.au CSIRO's Data 61 and UNSW Sydney, NSW, Australia

**SIGIR 2023** 





# Introduction

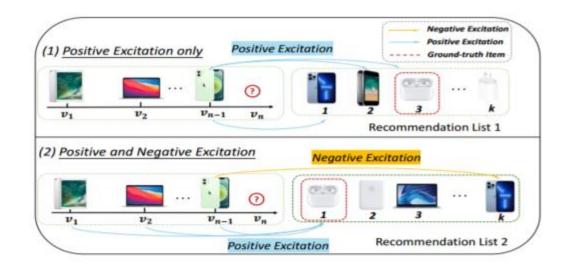
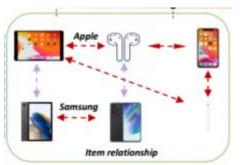


Figure 1: An example of recommendations via modeling positive excitation only (existing methods) and modeling both positive and negative excitation (our proposal). Clearly, the latter achieves better performance via ranking the ground-truth next item AirPods at the Top-1 position in the recommendation list.

Overlooking users' static interest revealed by some static attribute information of items, (category, brand).

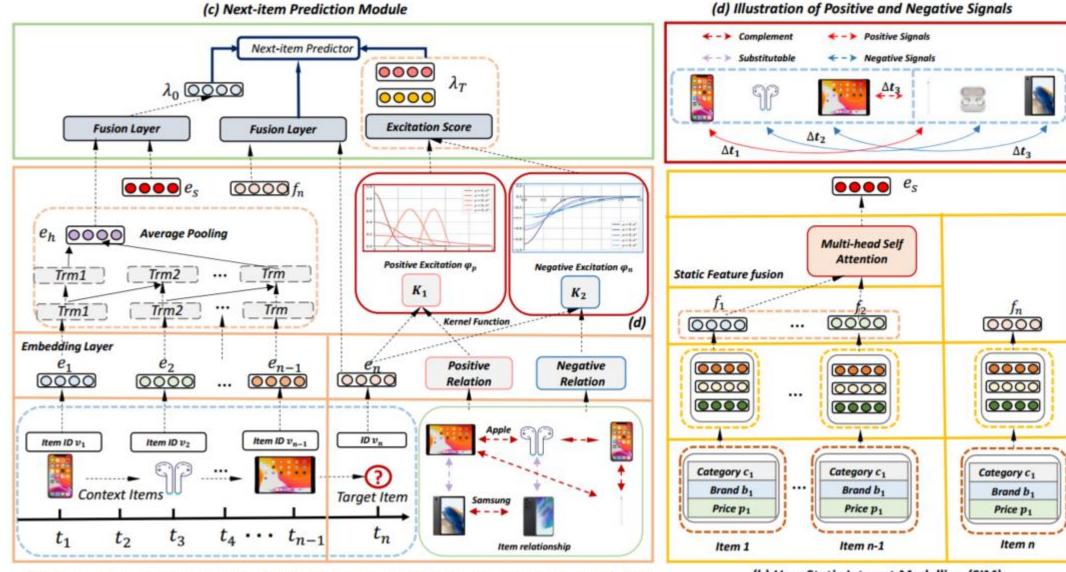
Existing works often only consider the positive excitation of a user's historical interactions.

In this paper, the author proposed modeling both static interest and negative excitation for dynamic interest.



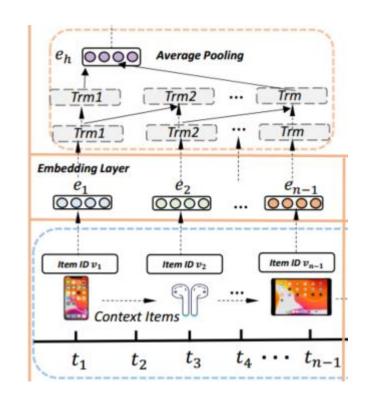
complementary also\_buy  $(r_1)$  share\_brand  $(r_3)$ 

substitute also\_view  $(r_2)$  similar\_item  $(r_4)$ 



(a) User Dynamic Interest Modelling (DIM) with Temporal Positive and Negative Excitation (TPNE)

(b) User Static Interest Modelling (SIM)



#### **PRELIMINARIES:**

$$\mathcal{U} = \{u_1, u_2, ..., u_{|U|}\}$$

$$\mathcal{V} = \{v_1, v_2, ..., v_{|V|}\}$$

$$H_u = \{v_1, v_2, ..., v_n\}$$

category ci

brand  $b_i$ 

price  $p_i$ 

interaction timestamp  $t_i$ 

### **Users' Dynamic Interest Modeling**

$$\lambda_T(t) = \lambda_0 + \sum_{i:t_i < t_n} \varphi(t_n - t_i), \tag{2}$$

$$\lambda_0 = e_h^T e_{v_n} + u_b + i_b, \tag{3}$$

$$A_i = Att((E(H_u) + POS_i)W^Q, (E(H_u) + POS_i)W^K, (E(H_u) + POS_i)W^V),$$
(4)

$$Att_i = Attention(Q, K, V) = \operatorname{softmax}\left(\frac{QK^{\top}}{\sqrt{d}}\right)V,$$
 (5)

$$E(H_u) = LayerNorm(H_u + Dropout(FFN(A_i))).$$
 (6)

## item embedding matrix $E \in \mathbb{R}^{|V| \times d}$ Hawkes Processes in Sequential Modeling

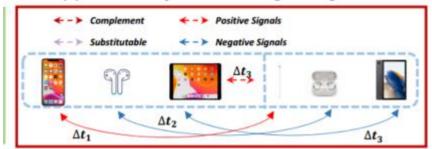
$$e_v = E(v) \in \mathbb{R}^{1xd}$$

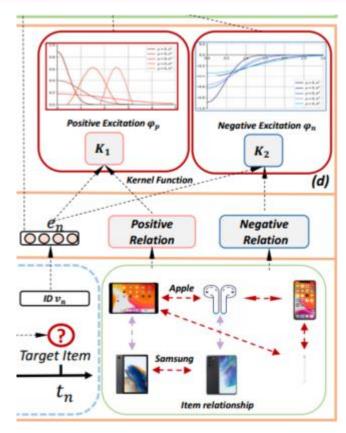
u's item embedding  $E(H_u)$ 

$$\lambda(t) = \mu(t) + \sum_{t_i < t} \varphi(t - t_i),$$

(1) 
$$e_h = \frac{1}{|N| - 1} \sum_{i=1}^{n-1} E(H_u)_i,$$
 (7)

#### (d) Illustration of Positive and Negative Signals





#### **Positive Excitation Learning and Negative Excitation Learning**

$$\lambda_T(t) = \lambda_0 + \sum_{i:t_i < t_n} \varphi_p(t_n - t_i) - \sum_{j:t_j < t_n} \varphi_n(t_n - t_j), \quad (8)$$

#### **Positive Excitation Learning**

$$\varphi_p(t_n - t_i) = \sum_{i:t_i < t} I_{rp}(v_i, v_n) \mathcal{K}_1(t_n - t_i),$$

$$\mathcal{K}_1^i(\Delta t_1) = N\left(\Delta t_1 \mid 0, \sigma_1^v\right) + N\left(\Delta t_1 \mid \mu_2^v, \sigma_2^v\right).$$

(9)  $r \in \{r1, r2, r3, r4\}$ complementary also\_buy  $(r_1)$ 

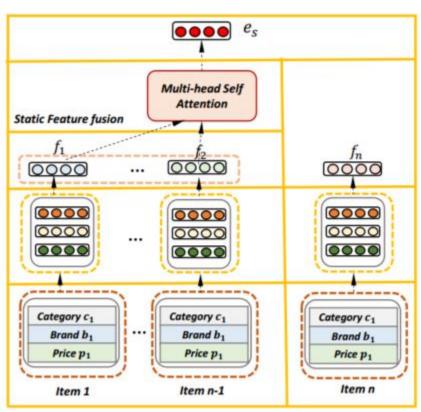
(10) share\_brand  $(r_3)$ 

### **Negative Excitation Learning**

$$\varphi_n(t_n - t_j) = \sum_{j:t_j < t_n} I_{rn}(v_j, v_n) \mathcal{K}_2(t_n - t_j), \tag{11}$$

$$\mathcal{K}_2(\Delta t_2) = -N\left(\Delta t_2 \mid 0, \sigma_3^v\right),\tag{12}$$

substitute also\_view 
$$(r_2)$$
 similar\_item  $(r_4)$ 



(b) User Static Interest Modelling (SIM)

#### **Users' Static Interest Modeling**

category embedding matrix  $C \in R^{|C| \times d}$ brand embedding matrix  $B \in R^{|B| \times d}$ price embedding matrix  $P \in R^{|P| \times d}$ 

$$f_i = c_i + b_i + p_i, \tag{13}$$

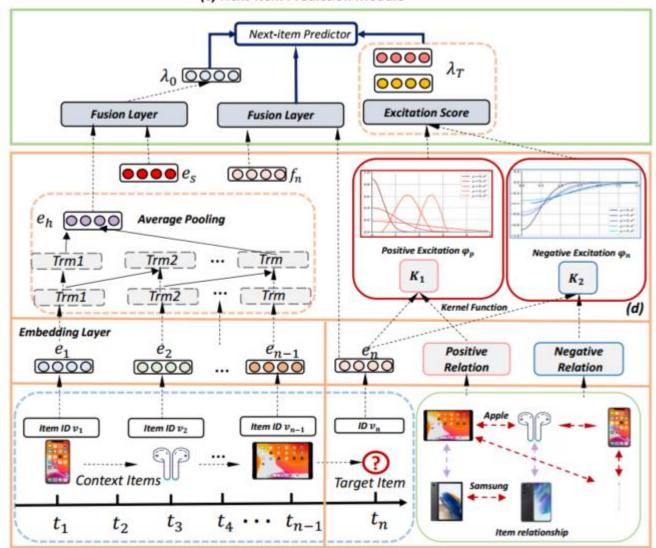
$$H_f = Att(FW^Q, FW^K, FW^V). \tag{14}$$

$$M_f = Multihead(F) = Concat(h_1, h_2, ..., h_{l_f})W^O,$$
 (15)

$$h_i = Att(FW_i^Q, FW_i^K, FW_i^V), \tag{16}$$

$$e_s = \frac{1}{|N| - 1} \sum_{i=1}^{|N| - 1} H_f, \tag{19}$$

#### (c) Next-item Prediction Module



(a) User Dynamic Interest Modelling (DIM) with Temporal Positive and Negative Excitation (TPNE)

#### **Next-item Prediction**

$$g = \sigma(W_1 e_s + W_2 e_h + b), \tag{20}$$

$$e_f = g \odot e_s + (1 - g) \odot e_h, \tag{21}$$

$$\mathcal{L}_r = -\sum_{u \in \mathcal{U}} \sum_{i=1}^{N_u} \log \sigma \left( \hat{y}_{ui} - \hat{y}_{uj} \right), \tag{22}$$

$$\hat{y}_{ui} = e_f^T e_i + \lambda_{T,i}, \quad \hat{y}_{uj} = e_f^T e_j + \lambda_{T,j}$$
 (23)

Table 2: Overall performance. Bold scores represent the highest results of all methods. Underlined scores stand for the second-highest results. Our model achieves the state-of-the-art result among all baseline models. \* means the improvement is significant at p < 0.05.

| Dataset                  | Metric  | BPR    | GRU4Rec | Caser  | NARM   | SASRec | TiSASRec | SLRS+  | Chorus | AHMP   | KDA    | SDIL    | Improv. |
|--------------------------|---------|--------|---------|--------|--------|--------|----------|--------|--------|--------|--------|---------|---------|
|                          | HR@5    | 0.3317 | 0.3202  | 0.3210 | 0.3334 | 0.4004 | 0.3872   | 0.4339 | 0.4536 | 0.4566 | 0.4860 | 0.4926* | 1.36%   |
|                          | HR@10   | 0.4355 | 0.4311  | 0.4345 | 0.4462 | 0.5074 | 0.4980   | 0.5337 | 0.5698 | 0.5519 | 0.5997 | 0.6128* | 2.18%   |
|                          | HR@20   | 0.5505 | 0.5693  | 0.5757 | 0.5823 | 0.6268 | 0.6179   | 0.6361 | 0.6838 | 0.6599 | 0.7144 | 0.7323* | 2.51%   |
|                          | NDCG@5  | 0.2361 | 0.2271  | 0.2246 | 0.2348 | 0.2923 | 0.2904   | 0.3319 | 0.3386 | 0.3496 | 0.3648 | 0.3698* | 1.37%   |
| Beauty                   | NDCG@10 | 0.2697 | 0.2628  | 0.2612 | 0.2712 | 0.3268 | 0.3181   | 0.3642 | 0.3762 | 0.3803 | 0.4016 | 0.4088* | 1.79%   |
|                          | NDCG@20 | 0.2987 | 0.2976  | 0.2967 | 0.3055 | 0.3569 | 0.3483   | 0.3900 | 0.4050 | 0.4076 | 0.4306 | 0.4390* | 1.95%   |
|                          | MRR     | 0.2363 | 0.2271  | 0.2246 | 0.2366 | 0.2923 | 0.2904   | 0.3319 | 0.3386 | 0.3421 | 0.3549 | 0.3610* | 1.72%   |
|                          | HR@5    | 0.3387 | 0.3015  | 0.3937 | 0.4168 | 0.4586 | 0.4520   | 0.4696 | 0.4697 | 0.5045 | 0.5497 | 0.5538* | 0.75%   |
|                          | HR@10   | 0.4528 | 0.4301  | 0.5309 | 0.5509 | 0.5810 | 0.5767   | 0.5641 | 0.5929 | 0.6132 | 0.6745 | 0.6792* | 0.70%   |
|                          | HR@20   | 0.5852 | 0.5918  | 0.6810 | 0.6974 | 0.7067 | 0.7022   | 0.6637 | 0.7152 | 0.7284 | 0.7923 | 0.8028* | 1.33%   |
|                          | NDCG@5  | 0.2430 | 0.2085  | 0.2800 | 0.2995 | 0.3412 | 0.3344   | 0.3634 | 0.3530 | 0.3852 | 0.4119 | 0.4188* | 1.69%   |
| Cellphone                | NDCG@10 | 0.2798 | 0.2498  | 0.3243 | 0.3429 | 0.3809 | 0.3748   | 0.3939 | 0.3929 | 0.4204 | 0.4523 | 0.4595* | 1.59%   |
| a arte A Discontinues at | NDCG@20 | 0.3131 | 0.2905  | 0.3622 | 0.3799 | 0.4126 | 0.4065   | 0.4191 | 0.4238 | 0.4495 | 0.4821 | 0.4908* | 1.80%   |
|                          | MRR     | 0.2453 | 0.2271  | 0.2246 | 0.2969 | 0.2923 | 0.2904   | 0.3319 | 0.3386 | 0.3747 | 0.3666 | 0.4049* | 10.45%  |
|                          | HR@5    | 0.2897 | 0.2902  | 0.2898 | 0.3173 | 0.3687 | 0.3475   | 0.4368 | 0.4124 | 0.4603 | 0.4805 | 0.4953* | 3.08%   |
|                          | HR@10   | 0.3897 | 0.4060  | 0.4103 | 0.4336 | 0.4767 | 0.4608   | 0.5345 | 0.5203 | 0.5587 | 0.5882 | 0.6069* | 3.18%   |
|                          | HR@20   | 0.5061 | 0.5546  | 0.5590 | 0.5777 | 0.6018 | 0.6003   | 0.6440 | 0.6443 | 0.6621 | 0.7019 | 0.7248* | 3.26%   |
|                          | NDCG@5  | 0.2068 | 0.1974  | 0.1947 | 0.2206 | 0.3023 | 0.2535   | 0.3490 | 0.3132 | 0.3600 | 0.3660 | 0.3797* | 3.74%   |
| Toys                     | NDCG@10 | 0.2390 | 0.2348  | 0.2336 | 0.2581 | 0.3140 | 0.2901   | 0.3804 | 0.3480 | 0.3918 | 0.4007 | 0.4157* | 3.74%   |
| 5                        | NDCG@20 | 0.2683 | 0.2721  | 0.2710 | 0.2944 | 0.3339 | 0.3253   | 0.4081 | 0.3793 | 0.4179 | 0.4294 | 0.4454* | 3.73%   |
|                          | MRR     | 0.2116 | 0.2271  | 0.2246 | 0.2244 | 0.2923 | 0.2904   | 0.3319 | 0.3386 | 0.3547 | 0.3666 | 0.3713* | 1.28%   |

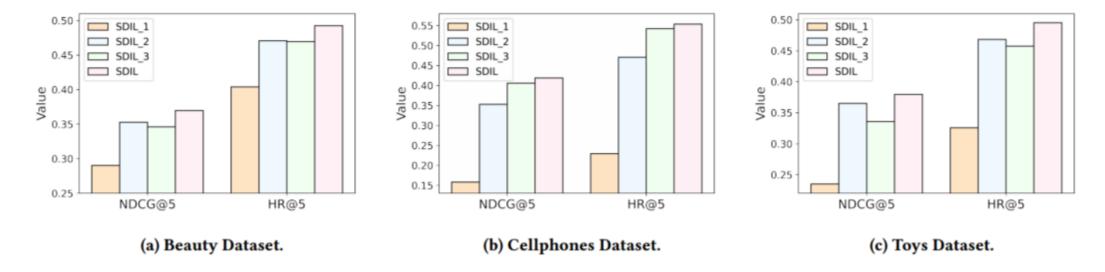
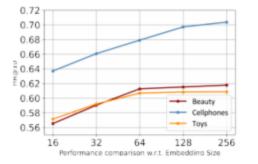


Figure 3: Ablation Study on the Model Performance. (HR@5 and NDCG@5) on different datasets.

Table 3: Performance comparison between SDIL-TPE and SDIL. \* means the improvement is significant at p < 0.05.

| Dataset                | Metrics | SDIL-TPE                                                                     | SDIL    |  |  |
|------------------------|---------|------------------------------------------------------------------------------|---------|--|--|
|                        | HR@5    | 0.4825                                                                       | 0.4926* |  |  |
|                        | HR@10   | 0.6054                                                                       | 0.6128* |  |  |
| Beauty                 | NDCG@5  | 0.3487                                                                       | 0.3698* |  |  |
| 500000000 <del>0</del> | NDCG@10 | 0.4014                                                                       | 0.4088* |  |  |
|                        | MRR     | 0.3534                                                                       | 0.3602* |  |  |
| V.                     | HR@5    | 0.5521                                                                       | 0.5538* |  |  |
|                        | HR@10   | 0.6772                                                                       | 0.6792* |  |  |
| Cellphones             | NDCG@5  | 0.4102                                                                       | 0.4188* |  |  |
| lafe" a sa             | NDCG@10 | 0.4422                                                                       | 0.4595* |  |  |
|                        | MRR     | 0.4825<br>0.6054<br>0.3487<br>0.4014<br>0.3534<br>0.5521<br>0.6772<br>0.4102 | 0.4049* |  |  |
|                        | HR@5    | 0.4871                                                                       | 0.4953* |  |  |
|                        | HR@10   | 0.5979                                                                       | 0.6069* |  |  |
| Toys                   | NDCG@5  | 0.3741                                                                       | 0.3797* |  |  |
| 1 1000                 | NDCG@10 | 0.3670                                                                       | 0.4157  |  |  |
|                        | MRR     | 0.3670                                                                       | 0.3713* |  |  |



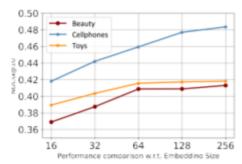
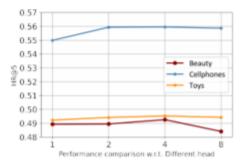


Figure 4: Embedding size setting's effect on the model performance. (HR@5 and NDCG@10).



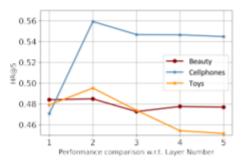


Figure 5: Different transformer layers setting's effect on the model performance. (HR@10 and NDCG@10).

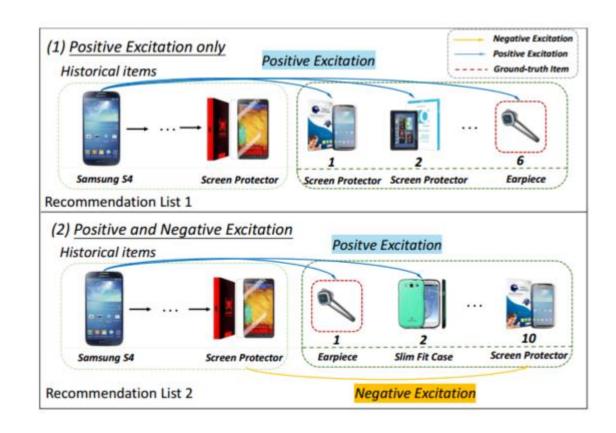


Figure 6: Illustration of the ranking results of TPE and TPNE. The item highlighted in the red boxes is the ground-truth item.



Figure 7: Illustration of the ranking results of SIM, DIM and DSIM. The item highlighted in the red boxes is the ground-truth item.